
Lab 6

1. Create the template function my_add that does c = a + b, where a, b, c are generic type T. This function

should work for any type of data (you must not change any line of code in the template function

substituting any real data type). Therefore, every data class working with a template function should

have an overload of the +, = operators as well as a copy constructor. The following code tests the

my_add function for the double and NODE_COORD data types. The NODE_COORD class was

developed in the implementation of Lab 4.

int _tmain(int argc, _TCHAR* argv[])
{

 // type NODE_COORD
 NODE_COORD ob1(2, 3), ob2(3,4), ob;
 ob1.disp("ob1");
 ob2.disp("ob2");
 ob = my_add(ob1, ob2);
 ob.disp("ob");

 // type int
 int a = 2, b = 3, c;
 c = my_add(a, b);

 system("pause");
 return 0;
}

2. Create a template function that finds the required element of an array of generic type T. The prototype

of this function corresponds to the find function of STL. p_begin – pointer to elements of the array

from which the search is started, p_end – pointer to the first element of the array, which is out of

searching range, key – an object of type K, which is used as the key for the search. This is the object

that needs to be found. It can be an object of type T (K == T), or it can be an object of another type - it

depends on which criteria the search is performed on. The my_find function contains t == k statement,

where t is a current element of an array of type T and k has type K - you need to overload the ==

operator for class T so that you can compare an element of an array of type T with a search key of type

K.

The element k can appear several times in an array of type T or not even once. In the latter case, my_find

must return NULL. First serach: we set p_begin to the beginning of the array. If the result is not NULL, the

searched item is still found. We need to check if this element is not present again - repeat the search, setting

p_begin to the result of the previous search plus 1 – see example main.

template <class T, class Key>

T * my_find(const T *p_begin, const T *p_end, const K &key)

/*==

Find element of array T *

Start from p_begin - points to the element to be started

 p_end - points to the first element to right from search interval

 key - key of search

There is nesessary to overload operator == for class T according with type of

K.

1. First search: p_begin = &array[0]

2. Second search: p_begin = &array[previous search+1]

===*/

int _tmain(int argc, _TCHAR* argv[])
{

 // type double
 int ndim = 10;
 int it;
 size_t dist;
 double *p_tab; //declae an array of double type
 double *p_tmp, search_item;

 try
 {
 p_tab = new double[ndim];
 }
 catch(bad_alloc aa)
 {
 cout << "mem_alloc_err\n";
 system("pause");
 exit(1);
 }

 for(it=0; it<ndim-1; it++)
 {
 p_tab[it] = (double)(it+1);
 }
 search_item = p_tab[ndim-1] = 3;

 cout << "how many " << search_item << " is met in p_tab?\n";
 cout << "which elements contain search_item?\n";

 p_tmp = p_tab; //set p_tmp to the begin of array
 while(p_tmp)
 {
 p_tmp = my_find(p_tmp, p_tab+ndim, search_item);
 if(p_tmp)
 {
 dist = p_tmp-p_tab;
 cout << "tab [" << dist << "] = " << *p_tmp << endl;
 p_tmp++;
 }
 else
 cout << "End of search\n";
 }
 delete [] p_tab;

 // type node_coord
 NODE_COORD tab_coord[] = {
 NODE_COORD(0, -1),
 NODE_COORD(3.0000000000001, 0),
 NODE_COORD(2, -1),
 NODE_COORD(0, 5)
 };

 double search_key = 3;
 // Find all vertices that contain at least one coordinate equal to 3.0
 //write your code, please!
 system("pause");
 return 0;
}

