
Lab_9 Virtual functions.

The Figure class is the base class for Circle, Triangle, Rectangle flat figures. Contains the abstract void area()

and void disp() functions. The area() function is designed to calculate the area of a plane figure, and disp() – to

display this area on the monitor.

class Figura

{
public:
 static size_t alloc; // how many times memory was dynamically allocated for objects

 //of derived classes
protected:
 double s; // Flat figure area
public:
 ….....................................
 //class method’s declaration
};

Create classes derived from Circle, Triangle, Rectangle that represent the appropriate flat circle, triangle and

rectangle figures. The data should be provided by parameterized constructors. Override the area and disp

methods in each class so that the area method counts the area of the appropriate figure and assigns the result

to the variable s, and disp – outputs the figure name. The Rectangle class in the constructor dynamically

allocates memory for the dat variable and increments the alloc variable. The destructor should free this memory

and decrement the alloc variable.

class Rectangle : public Figura

{
 double *dat; //dat[0] - a, dat[1] – b; a, b – side lengths
public:
 // class methods
};

The main function executes the code:

int _tmain(int argc, _TCHAR* argv[])
{
 Figura *ptr = NULL, *ptr_rect = NULL;
 //create a Rectangle object and assign its pointer to the base class pointer
 ptr_rect = new Rectangle (2, 3);

{
 //create the objects
 Circle cl(2), cl1(3);
 Triangle tr(2, 4);

 srand(time(NULL));

 for(int it=0; it<10; ++it)
 {
 int ind = rand()%4; // now ind is 0, 1, 2, 3 randomly
 switch(ind)
 {
 case 0: ptr = &cl;
 break;
 case 1: ptr = &cl1;
 break;

 case 2: ptr = &tr;
 break;
 case 3: ptr = ptr_rect;
 break;
 };

 // here ptr - base class pointer, randomly points to one of
 // derived class objects. For which objects will the functions area, disp
 //be called ?

ptr->area();
 ptr->disp();
 }

}//now cl, cl1 and tr go beyond a scope resolution area, destructors of these objects
 //should be called

 delete ptr_rect;
 ptr_rect = NULL;

 // if we allocate and deallocate memory correctly, alloc should be zero.
 if(Figura::alloc)
 cout << "!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!\n" << "error: leak of memory\n";

system("pause");
 return 0;
}

///

Exercise 2.

The base class Rectangle calculates the area of the rectangle S = a*h, where a - side length, h
- height.

class Rectangle
{
protected:
 double S; // Area
 double a; // side length
 double h; // height
public:
 Rectangle(double hh, double aa) : h(hh), a (aa) { S = 0; }
 void Calc() { Disp_T(); Calc_A(); Disp(); }
 void Disp_T() { cout << "Rectangle Area : "; }
 void Calc_A() { S = a*h; }
 void Disp() { cout << S << endl; }
};

An algorithm implemented by the Calc method is used:

1. We output the name of a flat figure - Disp_T ();.
2. We count area of it – Calc_A();.
3. Output the result – Disp();

Create a Triangle derived class that would call the base class's Calc () method (general field
calculation algorithm remains the same), but after calling Calc it should use its function
called Disp_T () – outputs "Triangle Area", and Calc_A () – computes the area of a triangle
with the base length a and height h). You must not change anything in the base class methods,
but you can change a declarations of methods. Please, use a dynamic polymorphism. In main()
function you must call of methods of the derived class using a pointer to the base class.

