Project_1

1. Create a class — template my_vect:

template <class T> class my vect

{
T *dat; //pointer to the array of T type
size t ndim; //number of items for which memory was dynamically allocated
size t last; //an index that points to the first "empty" element of the

//array
public:
my vect(size t dim); //allocates memory for the array dat to dim
// elements when creating an object
~my_ vect () ; //release memory occupied by array dat.

//class methods for searching Find(...)
T *get begin() { return dat; } //returns pointer to dat[0]
T *get end() { return &dat([last]; }

void push(const T &ob); // push object T in position last of array dat
// (to dat[last]) and reset last to point
//at the first free position

T * pop(); //returns the last element from dat array and reset last
//to the previous element.
void insert(const T ob[], size t ind, size t numb); // inserts an array ob

//in the array dat immediately after the element
//dat[ind]; numb - number of elements in the array ob.
void erase(const T *ob); //remove the * ob element from the array dat and
//shifts the array elements so that when removed,
//the array elements are placed contiguously.

private:
void realloc(); //1f last >= ndim - increases ndim and reallocates
//memory for array dat.};

}s
Add the method:

e clear_all — removal of all array elements
¢ Overload the <<, >> operators for writing and reading array dat into a binary file.
o Overload the operator [] to get and assign an element of the array dat[ind].

2. Create the template-function Find:

template <class T, class Key>
T * find(const T *p begin, const T *p end, const Key &k);

p_begin — pointer to the first element of the array tab from which the search begins; p_end — the first
element of the array tab which is after of the last element from the range of search; Key k — search
criteria (for given example — the vertex number). Returns pointer to the found object or NULL in the
case of unsuccessful search.

3. Create class mcoord, representing the coordinates of the vertex on the plain:

class mcoord

{

protected:

double *pcoord; //pcoord[0] - coordinate x, pcoord[l] - coordinate y
public:

mcoord (double xx, double yy):;

mcoord () {pcoord = NULL; }

~mcoord () { .. }

i

Create a class node that inherits class mcoord.

class node : public mcoord

{

int numb; //vertex’s number
char str[128]; //vertex’s name (for example, A or vertex A)
public:
node (int nb, char *st, double xx, double yy); //parameterized constructor
node () ;

For the node class, overload the operator =, add a copy constructor, overload the operator == (for
the correct operation of the Find (...) function; overload the <<, >> operators for inserting an object
into any stream and retrieving from any stream.

4. Create a system for handling errors, warnings and messages. All errors, warnings and
messages must be placed in one file, not spread over the entire code.
The dynamic allocation/release of memory is made by the operators new / delete
6. Create an interface on the basis of an infinite while () loop, which can be broken by introducing
some code from the monitor. The interface should contain:
¢ Add an object.
e Delete an object
e Delete all
¢ Modify an object
¢ Insert an array of objects
¢ Find all objects (by the vertex number — possible, several objects can have the same
number)
e Save data to a binary file.
¢ Read data from a binary file.
e View data on the monitor
o Quit.
7. Put each class, error (message) handling and file containing main () functions into separate *
.cpp files; * .h.
8. Present the project in electronic form as a project archive together with the data file.

o1

