
1

W1 C++

Dr. Hab. Eng. Sergiy Fialko,

http://torus.uck.pk.edu.pl/~fialko

sfialko@riad.pk.edu.pl

Literature

1. B. Stroustrup. The C++ Programming Language (Fourth Edition). May

2013, Addison Wesley. Reading Mass. USA. May 2013.

2. Herbert Schildt. The Complete Reference C++. 2020, Tata McGraw Hill.

https://www.allabout-engineering.com/download-the-complete-reference-c-by-

herbert-schildt/

3. C++ language documentation. MSDN.

https://docs.microsoft.com/en-us/cpp/cpp/?view=msvc-160

http://torus.uck.pk.edu.pl/~fialko
mailto:sfialko@riad.pk.edu.pl

2

W1 Object-Oriented Programming (OOP)

number of lines

in code (nlc)

Small

nlc < 10 000

Medium

10 000 < nlc <

100 000

Large

nlc > 100 000

Type of

programming

language

assembler,

FORTRAN

Structured

languages

C, Pascal

Object-oriented

languages

C++, Java

Structured languages: „code acting on data” – code operate on any type of data

used by the program.

OOL (object-oriented languages): "data controlling access to code„ – data type

defines precisely what sort of operations can be applied to that data.

Foundational principals of object-oriented languages.

• Encapsulation

• Polymorphism

• Inheritance

3

W1 Object-Oriented Programming (OOP)

• Encapsulation

Encapsulation is the mechanism that binds together code and the data it

manipulates, and keeps both safe from outside interference. When code and

data are linked together in this fashion, an object is created.

Within an object, it functions (methods of object) and data, or both may be private

to that object or public.

• Private methods can be called only by other methods of this object. Private

data can be processed only by methods (private or public) of this object.

Private methods cannot be called from outside of the object, and private data

is not accessible directly from outside of the code.

• Public methods can be called from both: methods of given object and outside

of the code. Public data is accessible from the methods of the given object as

well as from outside of the code.

• Private data can be accessed outside of the object only by using public

methods.

4

W1 Object-Oriented Programming (OOP)

Example 1 (W1).

The question arises: why complicate access to the members of an object

so much by introducing the access specifier private?

Let us consider a large and complex program with hundreds of thousands of lines

of code. Now try to check where the values of the variables ii, jj of the

MY_CLASS object change.

If it is a public variable, you need to search through a huge code for all fragments

of the id_object.ii = type.

If it is a private variable, its value can only be changed by calling a function of

type Set_j. We set a breakpoint in the Set_j function and run the task under the

debugger. Now we control all occurrences of the Set_j function from a huge part

of the code that is not related to the maintenance of our object. (W1)

5

W1

Polymorphism – “one interface, multiple methods”.

Allows the same piece of code (uniform interface) to control access to different

actions (multiple methods).

Distinguish between static and dynamic polymorphism.

• Static polymorphism is about the function and operator overloading and is

done at compile stage.

• Dynamic polymorphism is based on using virtual functions and is implemented

at runtime. The decision about which of the many virtual functions should be

called is made at runtime.

6

W1

Inheritance - is the process by which one object can acquire the properties of

another object.

If the data and actions on it can be organized hierarchically, then it is very

convenient at each level of the hierarchy to create only the maintenance of

the data that belongs to this level.

This programming technique makes it easier to understand the program and

reduces the development time.

Example W2.

Base class

derived class

7

W1

Simple sample C++

include <iostream> //C++ header (stdio.h)

using namespace std;

int main()

{

int i;

cout << “hello, C++” << “\n”; //single line comment

/* You can use C style comments as well*/

//input number using >> operator

cin >> i; //formatting is produced as default

//Output using << operator

cout << ”i = ” << i << ”i *i = ” << i*i << ”\n ” ;

return 0;

}

8

W1

include <iostream>

It is an analog C - #include <stdio.h>. Standard C++ uses a new style which does

not require .h. The new type headers used in C++ may not be header files, they are

abstract constructions which guarantee that the appropriate prototypes and

definitions required by the C++ libraries will be declared. For instance,

<vector> <fstream> <string>

using namespace std;

The namespace std will be used. A namespace creates the declarative region

(scope), in which many program elements can be placed. Namespaces help us in

organization of large programs.

Statement using grants the namespace std, in which is declared Standard C++

library (CRT).

C++ has an output operator << as well as input operator >> . C++ compiler

depending of context is possible to differ an insertion (output) operator << from the

left shift binary operator << as well as the extraction (input) operator >> from right

shift binary operator >> .

9

W1

Insertion to stream cout: Extraction from stream cin:

cout << a; cin >> b;

Standard stream devices:

cin – input device connected with input stream (keybord OS driver stream cin)

cout – output device connected with output stream (api cout stream OS driver

 screen)

cerr – output device connected with output stream designed for errors.

Statement cout >> object; does not required explicitly shows the format

specification, because acts the default formatting.

Exactly the same, statement cin >> object; does not require explicitly formatting

too.

To change the default formatting, needs to use the manipulators or the members of

ios class. We will consider this later.

10

W1

Examples:

double a = 0.3;

int i = 15;

char ch = 'a';

char str[] = “abcde”;

cout << “ a = “ << a << “ i = “ << i << “ ch = ” << ch << “ str: “ << str << endl;

double b;

cout << “input date: “ << endl;

cin >> b;

..

Example W3

When entering text lines, the >> operator stops after detecting the first space. Only

the first word will be entered, the remainder of the line will not. This works exactly

the same as input a text line with scanf (“% s”, str);

11

W1

Declaration of the local variables

In C, local variables must be declared at the beginning of a block. In C++, local

variables can be declared anywhere in the block.

It is advisable to declare variables not at the beginning of the block, only in cases

where it is justified, for example, in functions with many lines of code.

No default conversion to int

In C, if functions return variables whose type is not explicitly declared, by default the

type of that variable is treated as int. In the C++ language, the type returned by

functions must be declared explicitly.

Type bool

In C++ there is a built-in logical type - bool. The bool type object can only store true

and false values, which are keywords defined in C++. Values other than 0 are

converted to true, and zero is converted to false. Conversely, true is changed to 1

and false is changed to 0.

12

W1

Namespaces

Namespace is a declarative region. Namespaces are used to identify names and

avoid collisions. Elements declared in one namespace are separated from elements

declared in another.

13

W1

namespace MY_NAMESPACE_1

{

int i;

void fun(int j, char *str);

};

namespace MY_NAMESPACE_2

{

int i;

void fun(int j, char *str);

};

void MY_NAMESPACE_1::fun(int j, char *str)

{

cout << “j = “ << j << “ str: “ << str << endl;

}

void MY_NAMESPACE_2::fun(int j, char *str)

{

cout << “j*j = “ << j*j << “ str: “ << str << “ !!!” << endl;

}

14

W1

int i; //belongs to the global namespace (scope)

void fun(int j, char *str)

{

cout << “j*j*j = “ << j*j*j << “str: “ << “[“ << str << “] “ << endl;

}

int main()

{

MY_NAMESPACE_1::i = 1; //belongs to namespace MY_NAMESPACE_1

MY_NAMESPACE_2::i = 2; // belongs to namespace MY_NAMESPACE_2

..

// These are different variables - they are located at different memory locations

// For this, no name collisions arises; :: - scope resolution operator (range operator).

MY_NAMESPACE_1::fun(10, “abcd”); //call the function from scope MY_NAMESPACE_1

MY_NAMESPACE_2::fun(15, “efgk”); // call the function from scope MY_NAMESPACE_2

fun(20, “tunm”); // call the function from global namespace

15

W1

#include <iostream>

using namespce std; // makes std available throughout the entire file

.

void fun(list of arguments)

{

using namespace MY_NAMESPACE_1; //makes MY_NAMESPACE_1

//available in this block

.

}

void fun_second()

{

MY_NAMESPACE_2::i = 10; //makes member MY_NAMESPACE_1::i

//available only in this block

.

}

