
1

STL – Standardt Template Library

 STL - Standard Template Library - provides a tremendous amount of power to

the C ++ language. This library is widely used when developing C ++ applications.

Therefore, in this course, we will cover the most important aspects of using the

STL.

 The basic principle inherent in C ++ is that the data of a class is placed at the top

level of the hierarchy, and the functions that transform this data are subject to them.

 In the STL, the opposite is true. At the top level of the hierarchy are algorithms

that work the same for any data type.

 The combination of these two opposing concepts gives rise to certain difficulties

in understanding. Therefore, it is very important to understand this.

2

 STL contains general-purpose class templates and implementing functions.

 The STL kernel consists of containers, algorithms and iterators.

 Containers - these are objects intended for the storage of other objects.

Containers are possible to store the data of any types. There are several types of

containers:

o vector - contains dynamic array definitions (basic container).

o deque - queues and stacks (basic container).

o list - lists (basic container).

o map - associative container - enables efficient retrieval of values based on keys

(pair - key / value).

 Each container class contains definitions of the functions operating on it (push

an element at the end, pop an element, insert an element at the given place in a

container, etc.).

3

 Algorithms - they operate on containers. There are algorithms for initializing,

sorting, finding and replacing elements of a container class, etc. Many algorithms

operate on ranges of elements within a container.

 Iterators - are objects that act as pointers in relation to objects. They allow you to

navigate through the contents of a container in a similar way to the pointers

navigate within an array. There are five types of iterators:

Iterator Description

Random Access Iterator Writing and reading of values. Allows access to elements of

container in a random (in any) order.

Bidirectional Iterator Writing and reading of values. It allows you to move

forward and backward in a sequential manner

(incrementing or decrementing).

Forward Iterator Writing and reading of values. It only allows you to move

forward in a sequential manner.

Input Iterator Only reading the value. Moving only forward.

Output Iterator Only write value. Moving only forward.

4

 Attention! Similarly with I / O streams:

o Input - this is data retrieval from the container (read).

o Output - this is data output into the container (write).

 A more powerful iterator may be used in place of a more restricted iterator. For

example, the forward iterator can replace the input iterator.

 Iterators are used as well as pointers. It is possible to increment/decrement

them, the indirection operator * (iter_val) retrieves an object using an iterator

iter_val that points to this object. Iterators are declared using an iterator type

defined in different containers:

std::vector<type> :: iterator my_iter;

 STL also supports reverse iterators. These are bidirectional iterators or random

access iterators that move in the opposite direction through the sequence. This

means that incrementing the inverse iterator pointing to the last element of the

sequence will move to the penultimate element.

Example W44.

5

 In addition to containers, algorithms, and iterators, STL includes a number of other

standard components. The most important of these are allocators, predicates, and

comparator functions.

 Allocators. For each container, an allocator is defined that manages the memory

allocated to the container. A default allocator is an object of the class allocator, but the

developer can define his own object if a specialized application requires it. In most cases,

the default allocator is fine.

 Some algorithms and containers use special functions called predicates. There are unary

and binary predicates. These functions return true or false.

 Some algorithms and classes use special binary predicates to compare two elements.

 Typical STL headers: <vector>, <deque>, <algorithm>, <functional>, <utility> - see

MSDN.

6

 STL container class name types:

size_type size_t

reference Reference to the element of container

const_reference Element reference declared as const

iterator Iterator

const_iterator Iterator declared as const

reverse_iterator Reverse iterator

const_reverse_iterator Reverse iterator declared as const

value_type The type of value stored in the container

allocator_type The type of allocator

key_type The type of key

key_compare Type of function that compares two keys

value_compare Type of function that compares two values

7

 Vector

 Supports dynamic arrays - can be enlarged as needed.

 Template specification for vector:

template <class T, class Allocator=allocator<T>> class vector

 T - the type of stored data, Allocator - defines the allocator, the default is the standard

allocator.

 Constructors:

explicit vector(const Allocator &a=Allocator()); //creates an empty vector

//creates vector consisted of num elements with value val

explicit vector(size_type num, const T &val = T(),

const Allocator &a=Allocator());

//creates a vector with the same elements as ob

vector(const vector<T, Allocator> &ob);

8

//creates a vector containing elements from the range

//defined by iterators start and end

template<clasInIter> vector(InIter start, InIter end,

const Allocator &a=Allocator());

 Each object that will be stored in the vector container must have a default constructor

defined, and also depending on the functionality:

o Parameterized constructor.

o Destructor (if needs to release of memory).

o Copy constructor.

o Overloaded operator =.

o Overloaded operators ==, !=, <, <=, >, >=.

 The operators ==, <, <=, !=, >, >=, [] are defined for the vector container.

 The most frequently used member functions are:

size(), begin(), end(), push_back(), insert(), erase(), clear().

9

size() Returns the current number of items in the array

begin() Returns an iterator pointing to the start of the vector

end() Returns an iterator pointed to the end of the vector (the first empty

item in the array)

push_back(…) Places the value in the first empty position

insert(…) Adding elements in the arbitrary position of the vector

erase(…) Deleting items from the vector

clear() Removing all elements from an array. Memory deallocation does

not arise.

10

Algorithms

<algorithm>

 They operate on containers. Although each container supports basic operations, the

algorithms allow you to perform more elaborate and complex actions. They also enable

simultaneous work with two containers of different types.

 All algorithms are function templates. This means that they can be used with any type of

container.

 The list of algorithms is given in the MSDN. Let us consider some of the most popular

algorithms.

Example W45.

