
1

Introduction to inheritance

B

D

 First, a base class is created that contains the elements common to all objects of

the derived classes. The base class comprises the most general properties.

 Classes derived from a base class are called derived classes. The derived class

has all the characteristics of the base class and additional extensions.

The base class

The derived class

2

//Base class definition

class B

{

protected:

int i;

public:

int Get_i() { return i; }

B() : i(0) { cout << "Constructor B\n"; }

~B() { cout << "Destructor B\n"; }

}; fairly quick

//Derived class definition

class D : public B

{

int j;

public:

D(int n, int m) : j(n), i(m) { cout << "Constructor D\n"; }

~D() { cout << "Destructor D\n"; }

int get_j() { return j; }

int mul() { return i * j; }
};

Derived class definition:
class name_of_derived class : public [protected], [private] name_of_base_class

3

int main()

{

D ob(10, 20); //declaration of object of derived class

cout << "ob:" << endl;

cout << " i = " << ob.Get_i() << " j = " << ob.get_j() << " i*j = " << ob.mul() << endl;

system("pause");

return 0;

}

Output:

Constructor B
Constructor D
ob:
i = 20 j = 10 i*j = 200
Press any key to continue . . .
Destructor D
Destructor B

Example W11

4

The keyword public means:

 public members of the base class become public members of the derived class

 private members of the base class remain inaccessible in the derived class - the derived
class does not have direct access to these members - private data of the base class can be
made available in the derived class only through the base class's public method or through
declarations as protected. The last approach seems to be more preferable.

In given example:

A derived class object consists of members of the derived class and members of the base
class (example W11 – debugger).

5

Pointers to objects

Pointers to objects definition:

MY_CLASS ob; // object declaration - causes memory allocation for entire object,

// constructor is called

MY_CLASS *ptr_ob; // Pointer to object declaration. It is allocated 4B (8B).

// pointer is not initialized.

ptr_ob = &ob; // Pointer ptr_ob point to object ob.

ob.i = …… //Accesses to the public member using the object name ob.

ptr_ob->i = … // Accesses to the public member using the pointer ptr_ob.

ob.show(); //Call the class method using the object name ob.

ptr_ob->show(); //Call the class method using the pointer ptr_ob.

MY_CLASS obb[20]; //Declaration of the array of objects MY_CLASS

ptr_ob = obb; //ptr_ob point to zero element of array obb.

ptr_ob++; //ptr_ob point to first element of array obb.

ptr_ob = &obb[0]; //ptr_ob point to zero element of array obb.

ptr_ob += 10; //ptr_ob point to tenth element of array obb

6

class area_cl

{

double width;

public:

double get_width() { return width; }

void set_width(double a) { width = a; }

};

int main()

{

area_cl obb[20];

int it;

for(it=0; it<20; it++)

{

obb[it].set_width((double)(it));

}

area_cl *ptr_ob = obb;

for(it=0; it<20; it++, ptr_ob++)

{

if(fabs(ptr_ob->get_width()-obb[it].get_width()) > 1.0e-14)

cout << "error: it = “ << it << endl;

}

return 0;

}

7

Initializing arrays of objects

#include <iostream>

using namespace std;

class cl

{

int i, j;

public:

cl(int k, int n) : i(k), j(n) { } //parameterized constructor

int get_i() { return i; }

int get_j() { return j; }

};

int main()

{

cl ob[3] = { cl(1, 10), cl(2, 20), cl(3, 30) };

for(int i=0; i<3; i++)

cout << ob[i].get_i() << “ ” << ob[i].get_j() << endl;

return 0;

}

Output:

1 10

2 20

3 30

8

What if the program needs to use object initialization in some cases and not in

others (data is entered with I / O operators, dynamic memory allocations, ...)?

You have to overload the constructor:

#include <iostream>

using namespace std;

class cl

{

int i, j;

public:

cl(int k, int n) : i(k), j(n) { } //parameterized constructor

cl() : i(0), j(0) { } //default constructor

int get_i() { return i; }

int get_j() { return j; }

};

int main()

{

cl ob[3] = { cl(1, 10), cl(2, 20), cl(3, 30) }; // initialization

cl rtu[128]; //default constructor is called for each element of array

………………………………………………………..

return 0;

}

If this class has not a default constructor, the compiler will give an error message

in the line: cl rtu[128];

9

When calling a function - a class member, an implicit argument is automatically

passed to it, which is a pointer to the calling object (to the object from which the

function is called). This pointer is this.

class myclass

{

double base;

int exp;

public:

myclass(double a, int p);

double comp();

};

myclass::myclass (double a, int p)

{

base = a; //this->base = a;

exp = p; //this->exp = p;

}

double myclass::comp()

{ //raise a floating-point number b to an integer power of p

double ret = base; //ret = this->base;

int ti = exp; //ti = this->exp;

for(; ti > 0; ti - -)

ret * = base; //ret *= this->base;

return ret;

}

10

 Friend functions are not members of the class, therefore this pointer is not

passed to them.

 Static member functions do not have this pointer.

11

The dynamic allocation operators in C++.

C++ has two operators for the dynamic memory allocation: new and delete .

The operator new allocates a certain memory area and returns a pointer to its

beginning

ptr_var = new typ;

The delete operator releases memory allocated by new

delete ptr_var;

Here ptr_var is a pointer to type typ * ptr_var;

If the available memory is insufficient, there are two possible cases:

 By default, a bad_alloc exception will be generated. Exception - this is a

dynamic error (which occurs during program execution). The program should

handle the exception and take appropriate actions. We'll talk about exceptions

and handling exceptional situations later.

12

………………………………………..

myclass *ptr_ob = NULL;

try

{

//try to allocate memory:

ptr_ob = new myclass;

}

catch(std::bad_alloc aa)

{

//if memory did not allocate, a bad_alloc exception is raised.

//handle this exceptional situation end realize the emergency program termination

cout << ”memory allocation error \n”;

system(”pause”);

exit(1);

}

………………………………………………….

delete ptr_ob;

If the exception arises, but is not handled (block catch(bad_alloc) is missing or

blocks try …. catch are missing)

ptr_ob = new myclass;

the program will be aborted (PAGE FAULT).

13

 Returns a NULL pointer. Standard C++ allows this:

#include <new>

using namespace std;

………………………………………..

myclass *ptr_ob = NULL;

ptr_obj = new(nothrow) myclass;

if(!ptr_obj)

{

//obsługa błedu

……………………………………………………..

}

………………………………………………………

delete ptr_ob;

We will use the first mode of using the new operator.

If the pointer is not correct or the memory bounds when accessing the object

(array of objects) were exceeded, the delete operator will end up ruining the

process's dynamic memory system - PAGE FAULT.

14

When allocating memory for an array of objects with the new operator, the

constructor of class will be called for each element of the array. Correspondingly,

when memory is freed with the delete [] operator, the destructor will be called for

each element of the array. However, when allocating memory for an array of

objects with the function malloc from the run time C / C++ runtime library, the

constructor is not called, and when this memory is freed - the destructor is not

called either.

If the data block was allocated via malloc(…), it must be freed by free(). If the

data block was allocated with new, it must be released with delete or delete [].

In large software systems, special classes are written, which perform memory

allocation and release (memory manager). The experienced system programmer

decides what memory allocations are to be used and writes the classes himself.

For other programmers, it is imperative that you only perform dynamic memory

operations by methods of this class. (Iter, SCAD).

Initialization of allocated memory:

ptr_var = new typ (initial value);

15

Here ptr_var - a pointer to an object of type typ, and the type of initialization

value should be compatible with typ.

double *tt;
try
{

tt = new double (3.14);
}
catch(bad_alloc aa)
{
……………….
}
………………………….
delete tt;

class samp
{

int i, j;
public:

samp(int ii, int jj) : i(ii), j(jj) { }
…………………………………………………………
} ;

int main()
{

samp *ptr_ob = new samp(10, 20);
// initialization calls the parameterized
//constructor
……………………………………………………
delete ptr_ob;
return 0;

}

16

Dynamic memory allocation for arrays of objects:

ptr_var = new typ [number_of_elements_in_array];

delete [] ptr_var;

ptr_var – wskaźnik do typu typ.

Attention! If you omit [] in delete operator, only the array element with index zero

is freed.

When allocating arrays, they cannot be assigned an initial value.

If the class has a parameterized constructor, it must have also a default

constructor, because a default constructor is called for each element of the

array:

class_name *ptr_ob = new class_name [number_of_elements];

Example AllocNew.

