
1

Templates

Templates provide the ability to create generic functions and generic classes. In

generic functions (classes), the type of data the function (class) operates on is

referred to as a parameter. This means that you can create a function (class)

adapted to work with several data types without explicitly programming a new

version of the function (class) for each of the individual data types.

Generic functions

 Defines a set of operations to be performed on different data types.

 The data type is passed as a parameter.

 Many algorithms have exactly the same logic for different data types. For

example, searching an object in an array (data structure), sorting objects in an

array (data structure), adding an object to an array (to a data structure), removing

an object from an array (from the data structure)

2

 The use of generic functions (generic classes) is very efficient when data

processing algorithms do not depend on data types. Then the code can be

separated into procedures that do not depend on the data type (relate to

algorithms) and into procedures that relate to a specific data type (relate to the data

type).

 The part of the code that does not depend on the data type can be effectively

written as generic functions (generic classes).

 When creating a generic function, a function is created that can overload itself.

 To create generic functions using the keyword template. At the same time, a

skeleton of functions is created, in which appropriate data types will be substituted

during compilation - the compiler itself generates each specific implementation for

the given data type

template <class Ttype> typ_return_value function_name(list of arguments)

{

//function body

}

3

 Ttype - data type used by functions. This name can be used inside a function

definition. This symbol is a template. All actions of the generic algorithm when

executing it in this function will be performed using this symbol, and when creating

a specific version of the function, the compiler will replace this template symbol with

a real (substituted) data type. The word class may be replaced with typename :

template <typename Ttype> typ_return_value function_name(list of arguments)

{

//function body

}

Example W21.

 A generic function (the definition of this function is preceded by the keyword

template) is also called a template function. For each substituted data type, the

compiler creates a specific specialization of that function - we say that the compiler

creates a generated function. The process of generating a function is called

instantiation.

 The template keyword may be on a different line:

4

template <class T>

void findmydata(T ob, size_t len)

{

………………………………………..

}

 Between the template <class T> line and the void findmydata………. line no

instructions can appear.

 More than one generic type can be used in a template:

template <class T1, class T2> void myfunc(T1 a, T2 b)

{

……………………………..

}

 When creating a function template, the compiler generates as many different

versions of this function as needed to handle all the different function calls

occurring in the program.

 Template functions are similar to overloaded functions, but they are more limited.

With function overload, you can make any changes to code statements, template

function must execute the same code statements for each version.

5

 Although the template function itself performs an overload as necessary, an

explicit overload can be performer:

template <class T> void swapargs(T &a, T &b)

{

T tmp;

tmp = a; // class T must have an overload of the operator =

a = b;

b = tmp;

}

//Here the template function will remain redefined

void swapargs(double &a, double &b)

{

double t = a;

a = (a+b)*(a+b);

b = t;

}

void main()

{

double a = 10.0, b = 20.0;

coord c1(0, 0), c2(1,1);

swapargs(c1, c2); //call to initial swapargs

swapargs(a, b); // call to overloaded swapargs

}

Example W22.

6

 The example provided is not typical. If your program logic is that each version of

a function should execute its own algorithm, it is more natural to use overloaded

functions. If the algorithm is the same for each version, and the difference is only in

the data type, use templates naturally.

Generic classes

 The class contains the definitions of the algorithms it uses, but the data type on

which the class operates will be passed to it as a parameter only when the object is

created.

 Generic classes are useful when one set of algorithms must be used for different

data types.

 Template class declaration:

temlate <class Ttype> class class_name

{

};

 Ttype - the name of the type that will be specified when creating an object of the

class.

7

 Creating an instance of the class:

class_name <typ> objekt;

 typ - this is the data type on which the class is to operate. Functions - members

of a generic class, automatically become generic functions, there is no need to

precede their name with the template keyword when declaring their prototypes.

Example W23.

 Class templates provide the ability to create a general form of an algorithm that

can be further used to handle any type of data. This deprives the programmer of

writing multiple implementations of the same algorithm for different data types.

 The class template can have many data types:

template <class T1, class T2> class myclass

{

……………………………………………….

};

 The default data types associated with the standard data types can be used in

the template class:

8

tempalte <class T1, class T2 = int> class my_cl

{

….......

};

void main()

{

my_cl< coord, double > aa(……..); //T1 coord; T2 double

my_cl <coord> bb(………..); //T1 coord; T2 int

}

Example W24.

 The typename keyword has two uses

o serves as a replacement for the keyword class

o informs the compiler that the name used in the template declaration is for

the type name and not for the object name

typename X::Name someObj;

 X::Name is treated as a name type.

9

 The export keyword can precede template declarations. It gives the possibility to

put the template declaration in one file, and the definitions - in another.

 ATTENTION! The Visual Studio compiler does not support the export keyword.

For compound programs, the template declarations and definitions must be placed

in the *.h file, and in those files where this template must be made available, the

header file must be included.

10

Input-output in C ++

 C ++ supports two complete I / O systems

o I / O of C based on CRT library.

o I / O of C++.

 The main advantage of C ++ I / O is the overload operators <<, >> for the

classes you create. This makes it possible to build data types created by

programmer into I / O systems.

 Stream - is a logical device that produces or retrieves information.

 All I / O streams behave the same - the I / O system presents the same interface

to different physical devices. This means, for example, that the same function will

output to monitor, file, printer,….

 The streams stdin, stdout, stderr are created when the C program is started.

11

 The I / O library creates two separate versions of the class hierarchy - one is 8-

bit and the other is 16-bit.

Template class Class for 8-bit version

basic_streambuf streambuf

basic_ios ios

basic_istream istream

basic_ostream ostream

basic_iostream iostream

basic_fstream fstream

basic_ifstream ifstream

basic_ofstream ofstream

12

ios_base
Stream state format which does not

depend on national peculiarities

basic_ios <>
Stream state format which depends

on national peculiarities

V
ir

tu
a

l
b

a
s

e
 c

la
s

s

S
ta

te
 o

f
s

tr
e
a

m

basic_iostream <>
Formatting << >>

basic_ostream <>
Formatting <<

basic_istream <>
Formatting >>

basic_ofstream <>
Formatting <<

basic_ifstream <>
Formatting >>

basic_fstream <>
Formatting << >>

13

 For access to an important ios class, you need to include an <iostream> header.

Formatting of the Input \ Outputs operations

I \ O formatting can be done:

o with the use of ios class members;

o with the use of manipulators - special functions that can be placed in

expressions concerning I \ O.

Formatting with ios class-members

 Each stream has a set of formatting flags that control how the information is

formatted. These are bit masks.

 The fmtflags bitmask (ios_base class-members - see MSDN) is declared in ios

class.

14

 Enumeration fmtflags:

adjustfield floatfield right skipws

basefild hex scientific unitbuf

boolalpha internal showbase uppercase

dec left showpoint

fixed oct showpos

flag set not set

skipws Leading symbols (spaces, tabs, newline) are ignored
on output to the stream

are not ignored

left Left edge alignment If all these flags are
ignored - defaults

right Right edge alignment

internal Numeric values are padded to occupy the entire field
- spaces are inserted between digits and the sign

15

flag set not set

oct displaying values in octal system Default – the
decimal system

hex displaying values in hexadecimal

dec restore to the decimal system -------------

showbase show the basis of the counting system does not show

uppercase in scientific notation we display 'E', hexadecimal -
'X'

default: ‘e’, ‘x’

showpos '+' sign is displayed is not displayed

showpoint displays the decimal point and trailing zero
everywhere

is not displayed

scientific floating-point values are displayed in scientific
notation 3.141592e + 00

the compiler
chooses the

appropriate notation
by itselffixed floating-point values are displayed in ordinary

notation 3.141592

unitbuf the buffer is flushed after each insertion operation Is not flushed

boolalpha logical values can be entered and outputted as
false, true

numbers 0, 1

basefield dec | hex | oct not

16

flag set not set

adjustfield internal | left | right not

floatfield fixed | scientific not

ios_base class-members:

fmtflags setf(fmtflags flags) Returns the previous flag setting and sets the listed
arguments.

stream.setf(ios::showpos | ios::scientific);

stream - the stream to which the flags belong is an object of
a class derived from ios_base. There is no global formatting
in C ++, all formatting is done on a current stream.

showpos, scientific - these are enumerated values in the ios
class, for this the range operator is necessary, otherwise the
compiler does not "see" these values.

void unsetf(fmtflags flags) Flags in the flags list are zeroed. All other flags - unchanged.

17

fmtflags flags(); Returns the current state of the flags, does not change
anything in set flags:

ios::fmtflags f = cout.flags();

fmtflags flags(fmtflags f); Set any flags defined in the fmtflags f template, return the
previous setting of the flags:

ios::fmtflags f = ios::showpos | ios::showbase;
ios::fmtflags f_prev = cout.flags(f);

streamsize width(streamsize w); By default, when outputting a value, it takes as many positions
as it has symbols. The width () functions give the minimum
field width w, returns the previous field width. After each
output is made, the field width remains set as the default
value. The rest of the field (not occupied by symbols) will be
filled with the fill symbol (by default - space). If the number of
symbols exceeds the set field width, the number of symbols
equal to the value will be output.

streamsize precision(streamsize p); By default, floating-point numbers are output with a precision
of 6 digits. The precision can be changed using the precision()
function. Returns the previous precision.

18

Function fill () - a member of a derived class basic_ios:

template <class Elem, class Traits> class basic_ios : public ios_base

char fill(char ch); By default, empty items are filled with spaces. The fill () function allows you to
fill these items with the ch symbol.

Example W25.

I / O Manipulators

Manipulators - these are special functions that can be included in I / O

expressions. To access parameter manipulators, you need to add the <iomanip>

header.

Standard manipulators:

19

manipulator destiny I \ O

boolalpha Turns on the boolalph flag I \ O

dec Turns on the dec flag I \ O

endl Outputs a newline and empties the stream O

ends Outputs null-terminating symbol ‘\0’ O

fixed Turns on the fixed flag O

flush Empties the stream O

20

manipulator destiny I \ O

hex Turns on the hex flag I \ O

internal Turns on the internal flag O

left Turns on the left flag O

noboolalpha Turns out the boolalpha flag O

noshowbase Turns out the showbase flag O

noshowpoint Turns out the showpoint flag O

noskipws Turns out the skipws flag O

nounitbuf Turns out the unitbuf flag O

nouppercase Turns out the uppercase flag O

oct Turns out the oct flag I \ O

resetiosflags(fmtflags f) Disables the flags listed in f O

right Turns on the right flag O

scientific Turns on the scientific flag O

setbase(int base) Assigns the value shown in base to the base of
the counting system

I \ O

setfill(int ch) Defines as a fill sign ch O

setiosflags(fmtflags f) Enables the flags listed in f I \ O

21

manipulator destiny I \ O

setprecision(int p) Sets the precision value O

setw(int w) Defines the field width as w O

showbase Turns on showbase flag O

showpoint Turns on showpoint flag O

showpos Turns on showpos flag O

skipws Turns on skipws flag O

unitbuf Turns on unitbuf flag O

uppercase Turns on uppercase flag O

ws Skip empty leading characters I

Example:

#include <iostream>

#include <iomanip>

using namespace std;

int main()

{

cout << hex << 100 << endl;

cout << setfill(‘?’) << setw(10) << 2343.0;

}

output: 64

??????2343

22

 Manipulators appear in complex expressions and are often found to be more

useful than members of the ios class.

 If the manipulator takes no arguments (for example, endl, hex), no parentheses

are present. This is because it is a function address passed to the overloaded

operator << .

 I / O manipulators only affect the stream for which they are enabled. Other

streams open in the program are not affected.

Example W26.

23

I / O operations, performed on files

 Files have many unique features, so in the C ++ I / O system there are special

classes created for working with files ofstream, ifstream, fstream (see the class

hierarchies). Header <fstream> is needed.

 There is the basic_filebuf template class for lower-level management of file

streams (binary files handling).

basic_streambuf <>

basic_filebuf <>
(synonim filebuf)

24

Opening and closing a file.

 When you open a file, you connect it to a stream. There are three types of

streams:

o input (handled by ifstream class)

o output (ofstream class)

o input \ output (fstream class)

 Opening the file is produced when the constructor of the appropriate class is

called or when the open(...) method of the class is explicitly used.

Example W27.

 The open method:

void basic_ifstream::open(const char *_Filename, ios_base::openmode _Mode = ios_base::in,

int _Prot = (int)ios_base::_Openprot);

void basic_ofstream::open(const char *_Filename, ios_base::openmode _Mode =

ios_base::out, int _Prot = (int)ios_base::_Openprot);

void basic_fstream::open(const char *_Filename, ios_base::openmode _Mode = ios_base::in |

ios_base::out, int _Prot = (int)ios_base::_Openprot);

25

Opening and closing a file.
 The file open mode depends on the value of ios_base openmode _Mode.

class ios_base {

public: typedef implementation-defined-bitmask-type openmode;

static const openmode in; static const openmode out; static const openmode ate; static const

openmode app; static const openmode trunc; static const openmode binary; // ... };

ios_base::app Before each write to the file, the file position indicator will be

moved to the end of the file (add mode at the end of the file)

ios_base::ate When opening the file, the position indicator will be moved to the

end of the file, because writing \ reading can be done anywhere in
the file

ios_base::binary Binary mode. By default, files are opened in text mode. The file,

when opened in text mode, "sees" formatting and special
characters. The file, opened in binary mode, "does not see" the

formatting.

ios_base::in The file is open for reading (extraction)

ios_base::out The file is open for writing (insertion)

ios_base::trunc The contents of the existing file are destroyed, the file will be

truncated to zero length while being opened

26

basic_filebuf::open

ios_base::in becomes "r" (open existing file for reading).

ios_base::out

ios_base::out | ios_base::trunc

becomes "w" (truncate existing file or create for

writing).

ios_base::out | ios_base::app becomes "a" (open existing file for appending all

writes)

ios_base::in | ios_base::out becomes "r+" (open existing file for reading and

writing).

ios_base::in | ios_base::out |

ios_base::trunc

becomes "w+" (truncate existing file or create for

reading and writing).

ios_base::in | ios_base::out |

ios_base::app

becomes "a+" (open existing file for reading and for

appending all writes).

_Prot - the default file opening protection, equivalent to the shflag parameter in

_fsopen(…..).

27

Unformatted and binary input/output

 In the classic C / C ++ I / O functions realize the byte operations. Since

sizeof (char) = 1 B, the type char is used in the prototypes of these functions.

 We will open files in binary mode (ios_base binary).

 In C ++ Run-time library put, get functions for binary files save and read one

byte of information:

istream & get (char & ch);

ostream & put (char ch);

Example W28.

 C ++ Run-time library read, write functions for writing / reading blocks:

basic_istream & read(char_type *_Str, streamsize _Count);

basic_ostream & write(const char_type *_Str, streamsize _Count);

_Str is a pointer to a memory buffer cast to char * or const char *, and _Count

gives the number of bytes to be written / read.

28

If the end of the file is read before the _Count bytes are read, the reading is

interrupted and the _Str buffer contains as many bytes as actually was read. To

check how many bytes have been read, there is a

streamsize basic_istream :: gcount() const;

 To unload the system I \ O buffer into file, use

basic_ostream basic_ostream flush ();

We do not use flashing the file unnecessarily - it slows down the operation of the

program significantly. When closing the file, the data is automatically unloaded

from the system buffer and saved to the file.

 Free (direct) access. In C ++, a file has 2 position indicators - one specifies

the file positions where the next input will take place, and the other the output.

For the shift of file position indicators we have 2 systems of functions xxxg ()

(get - read), xxxp () (put - write).

 Moves the file position indicator to the value _Off regarding _Way:

basic_istream & basic_istream::seekg (off_type _Off, ios_base::seekdir _Way);

basic_ostream& basic_ostream:: seekp (off_type _Off, ios_base::seekdir _Way);

29

o _Way == ios_base :: beg - regarding the beginning of the file

o _Way == ios_base :: end - regarding the end of the file

o _Way == ios_base :: cur - regarding the current position

 Sets the file position indicator to the position given by _Pos

basic_istream & basic_istream::seekg (pos_type _Pos);

basic_ostream& basic_ostream:: seekp(pos_type _Pos);

 Indicates the position of the file position indicator:

pos_type basic_istream :: tellg();

pos_type basic_ostream :: tellp();

30

Example:

#include <iostream>

#include <fstream>

int main ()

{

using namespace std;

ifstream file;

char c, c1;

file.open("basic_istream_seekg.txt");

if(!file) return;

file.seekg(2); // chars to skip

file >> c;

cout << c << endl;

file.seekg(0, ios_base::beg);

file >> c;

cout << c << endl;

file.seekg(-1, ios_base::end);

file >> c1;

cout << c1 << endl;

file.close();

}

Text file:

basic_istream_seekg.txt:

0123456789

Output:

2

0

9

31

 Checking the status of input / output. The current state of the I \ O system is

stored in an object of type ios_base :: iostate:

class ios_base {

public:

typedef implementation-defined-bitmask-type iostate;

static const iostate badbit;

static const iostate eofbit;

static const iostate failbit;

static const iostate goodbit;

// ... };

The type is a bitmask type that describes an object that can store stream state

information. The distinct flag values (elements) are:

badbit, to record a loss of integrity of the stream buffer.

eofbit, to record end-of-file while extracting from a stream.

failbit, to record a failure to extract a valid field from a stream.

In addition, a useful value is goodbit, where none of the previously mentioned bits are set

(goodbit is guaranteed to be zero).

 Functions ios_base::iostate basic_ios:: rdstate() const; returns an iostate object

containing these bit flags.

32

 failbit = 1 - for example, when entering int, a symbol turned out that cannot be

converted correctly to an int type.

 Another way to check:

bool basic_ios::bad() const; //true, if flag badbit is set

bool basic_ios::eof() const; //true, if flag eofbit is set

bool basic_ios::fail () const; // true, if flag failbit is set

bool basic_ios::good () const; // true, if flag goodbit is set

 reset error flags:

void basic_ios::clear(iostate _State = goodbit);

If goodbit flag is given as argument, all flags will be cleared. If another flag is

specified as an argument, only that flag will be reset.

Example IO_1

Example W29.

