
1

Inheritance (advanced topics)

 The general form of class inheritance:

class derived_class_name : access_specifier base_class_name

{

}

access_specifier: public private protected

 The access specifier defines how members of a base class are inherited from a

derived class. If an access specifier is not specified, it defaults to a derived class

declared with the class keyword as private; with the keyword struct - as public.

 public:

o The public members of the base class become public members of the

derived class (directly accessible inside and outside the derived class).

o The private members of the base class remain the private members of

the derived class. This means that access to these members is possible

only through public function of the get_val () type, both in the derived

class and outside the derived class.

2

o The protected members of the base class become protected members of

the derived class - directly accessible members in the derived class, yet

they remain inaccessible outside in the derived class and in the base class.

 private:

o The public members of the base class become the private members of

the derived class. Inside the derived class, direct access to these

members exists, outside - it does not exist. A derived class can expose

the public members of the base class through its get_derived () public

methods or restore it again as public (see slide 4).

o The private members of the base class remain the private members of

the derived class. A derived class does not have direct access to these

members (is possible an access only through base class public

methods), outside access to hidden base class members through base

class methods is impossible (the base class methods become hidden

members of the derived class).

o The protected members of the base class become private members of

the derived class - they are available directly in the derived class and are

not accessible outside the derived class.

3

 protected:

o The public members of the base class become protected members of the

derived class.

o The private members of the base class remain the private members of the

derived class.

o The protected members of the base class remain the protected members of

the derived class.

 Reversal of the public components of the base class when inherited as private:

4

class B

{

int i;

public:

int j;

..

};

class D : private B

{

public:

B::j; //restoration of the public member of the base class

//to the status of public when inherited as private.

B::i; //error! i - private member of the base class

};

int main()

{

D ob;

ob.j = 20; //OK

return 0;

}

5

The access specifier for a

member of the base class

The derived class is inherited as

: public : private : protected

public:

(It is accessible outside

the base class -

ob.i =… // OK)

inside the derived

class:

is accessible

inside the derived

class:

is accessible

inside the derived

class:

is accessible

outside the derived

class:

is accessible

outside the derived

class:

is inaccessible

outside the derived

class:

is inaccessible

private:

(It is inaccessible outside

the base class -

ob.i = … // !OK)

inside the derived

class:

is inaccessible

inside the derived

class:

is inaccessible

inside the derived

class:

is inaccessible

outside the derived

class:

is inaccessible

outside the derived

class:

is inaccessible

outside the derived

class:

is inaccessible

protected:

(It is inaccessible outside

the base class -

ob.i = … // !OK)

inside the derived

class:

is accessible

inside the derived

class:

is accessible

inside the derived

class:

is accessible

outside the derived

class:

is inaccessible

outside the derived

class:

is inaccessible

outside the derived

class:

is inaccessible

6

 The specifiers that determine how a base class is inherited by a derived class

do not affect how the members of the base class are accessed in the derived

class. Access to base class members in a derived class is determined only by what

access specifier those members are declared in the derived class.

Constructors, destructors and inheritance

 If the base class and the derived class have constructors and destructors, the

order of calls is as follow:

o Base class constructor

o Derived class constructor

o Derived class destructor

o Base class destructor

 The base class knows nothing about the existence of the derived class -

initialization in the base class is performed independently of the derived class.

Base class initialization can be the basis for derived class initialization. For this, the

constructor of the base class is called before the constructor of the derived class.

7

 On destroying objects, destroying the base class would damage the derived

class object. For this, the destructor of the derived class is to be called earlier than

the destructor of the base class.

 Passing arguments to the constructor of the base class.

o All arguments of the derived class, as well as the base class, are passed

to the derived class constructor.

o The base class arguments remain passed to the base class.

derived_class_constructor(full_argument_list) : base_class_constructor(argument_list_to_base_class)

{

//body of constructor of derived class

}

full_argument_list – the argument list of the derived class and the base class.

argument_list_to_base_class – the base class argument list.

 Example 37.

8

 Example:

class base

{

int i;

public:

base(int ii) { i = ii;}

};

class derived : public base

{

int j;

public:

derived(int ii) : base(ii) { j=0; } //passing an argument to the base class

//derived class does not require the arguments

};

Multi-inheritance

B

D1

D2

B1 B2

D

The derived class

inherits several base

classes

Multilevel hierarchy

of classes

9

 In a multi-level class hierarchy, constructors are called in the order

in which these classes inherit, and destructors - in the reverse order.
B

D1

D2

Definitions of the derived classes:

class D1 : public B

{

};

class D2 : public D1

{

};

o constructor B

o constructor D1

o constructor D2

o destructor D2

o destructor D1

o destructor B

 If a derived class inherits several base classes, the

derived class declaration is a follow:

class D : public B1, public B2

{

};

class derived_class_name: access specifier base_class_name_1,

access specifier base_class_name_2,

…………………………………………………

access specifier base_class_name_N

{

};

B1 B2

D

10

 Constructors are called in the order in which the classes were created, in order

from left to right, which is as the base classes were listed in the inheritance list.

Destructors are called in reverse order, right to left:

constructor B1

constructor B2

constructor D

destructor D

destructor B2

destructor B1

 In that case, the constructors and destructors will be called like this:

class D : private B2 , private B1

{

}

constructor B2

constructor B1

constructor D

destructor D

destructor B1

destructor B2

11

 Passing arguments to constructors of base classes.

derived_class_constructor(list_argum_full) : base_class_name_1(list_argum_1) ,

base_class_name_2(list_argum_2) ,

………………………………………,

base_class_name_N(list_argum_N)

{

// derived class constructor

}

list_argum_full – the general argument list for the derived class and all base classes.

list_argum_1 – the argument list for base class 1,

list_argum_2 – the argument list for base class 2,

………………………………………………………………….

list_argum_N – the argument list for base class N

Example W38, W39

 We will consider such a situation:

12

B {int i;} B {int i;}

D1 D2

D3

 There is ambiguity in this class hierarchy. Let class

B have an int i member. Then classes D1, D2

(derived from class B, so each of these classes

contains its own copy of the base class) will have two

different instances of the member i, which are at

different memory addresses. The D3 class inherits

from D1, D2. So in class D3 there are 2 instances of

component i. Which instance of the component i

should we taken?

 Virtual classes prevent the creation of two instances of variable int i in this

situation:

class D1 : virtual public B

{

}

class D2 : virtual public B

{

}

class D3 : public D1, public D2

{

} Example W40.

13

 If the base class B has been inherited by D1, D2 as a virtual class, a single

copy of this base class is created inside the derived class.

 The difference between normal and virtual class occurs when an object inherits

from the base class more than once.

 Przykład W41 (from Schildt)) !

