
68 CHAPTER 4. RELATED ISSUESbeginning of each jagged diagonal. The advantages of JDS for matrix multiplicationsare discussed by Saad in [185].The JDS format for the above matrix A in using the linear arrays fperm, jdiag,col ind, jd ptrg is given below (jagged diagonals are separated by semicolons)jdiag 6 9 3 10 9 5; 7 6 8 -3 13 -1; 5 -2 7 1; 4;col ind 2 2 1 1 5 5; 4 3 3 2 6 6; 5 5 4 4; 6;perm 4 2 3 1 5 6 jd ptr 1 7 13 17 .Skyline Storage (SKS)The �nal storage scheme we consider is for skyline matrices, which are also calledvariable band or pro�le matrices (see Du�, Erisman and Reid [80]). It is mostly ofimportance in direct solution methods, but it can be used for handling the diagonalblocks in block matrix factorization methods. A major advantage of solving linearsystems having skyline coe�cient matrices is that when pivoting is not necessary, theskyline structure is preserved during Gaussian elimination. If the matrix is symmetric,we only store its lower triangular part. A straightforward approach in storing theelements of a skyline matrix is to place all the rows (in order) into a oating-pointarray (val(:)), and then keep an integer array (row ptr(:)) whose elements point tothe beginning of each row. The column indices of the nonzeros stored in val(:) areeasily derived and are not stored.For a nonsymmetric skyline matrix such as the one illustrated in Figure 4.1, we storethe lower triangular elements in SKS format, and store the upper triangular elementsin a column-oriented SKS format (transpose stored in row-wise SKS format). Thesetwo separated substructures can be linked in a variety of ways. One approach, discussedby Saad in [186], is to store each row of the lower triangular part and each columnof the upper triangular part contiguously into the oating-point array (val(:)). Anadditional pointer is then needed to determine where the diagonal elements, whichseparate the lower triangular elements from the upper triangular elements, are located.4.3.2 Matrix vector productsIn many of the iterative methods discussed earlier, both the product of a matrix andthat of its transpose times a vector are needed, that is, given an input vector x wewant to compute productsy = Ax and y = ATx:We will present these algorithms for two of the storage formats from x4.3: CRS andCDS.CRS Matrix-Vector ProductThe matrix vector product y = Ax using CRS format can be expressed in the usualway: yi =Xj ai;jxj;



4.3. DATA STRUCTURES 69+ x xx + x xx x + x xx x + x x x xx + x x xx x x + x xx x + x x xx x x + x x x xx x x x + x x xx + x x xx x x x + x xx x + x xx x x + x x xx x + x x+ x xx x x + x+Figure 4.1: Pro�le of a nonsymmetric skyline or variable-band matrix.since this traverses the rows of the matrixA. For an n�n matrix A, the matrix-vectormultiplication is given byfor i = 1, ny(i) = 0for j = row_ptr(i), row_ptr(i+1) - 1y(i) = y(i) + val(j) * x(col_ind(j))end;end;Since this method only multiplies nonzero matrix entries, the operation count is 2 timesthe number of nonzero elements in A, which is a signi�cant savings over the denseoperation requirement of 2n2.For the transpose product y = ATx we cannot use the equationyi =Xj (AT )i;jxj =Xj aj;ixj;since this implies traversing columns of the matrix, an extremely ine�cient operationfor matrices stored in CRS format. Hence, we switch indices tofor all j, do for all i: yi  yi + aj;ixj :The matrix-vector multiplication involving AT is then given byfor i = 1, ny(i) = 0end;for j = 1, nfor i = row_ptr(j), row_ptr(j+1)-1y(col_ind(i)) = y(col_ind(i)) + val(i) * x(j)



70 CHAPTER 4. RELATED ISSUESend;end;Both matrix-vector products above have largely the same structure, and both useindirect addressing. Hence, their vectorizability properties are the same on any givencomputer. However, the �rst product (y = Ax) has a more favorable memory accesspattern in that (per iteration of the outer loop) it reads two vectors of data (a rowof matrix A and the input vector x) and writes one scalar. The transpose product(y = ATx) on the other hand reads one element of the input vector, one row ofmatrix A, and both reads and writes the result vector y. Unless the machine on whichthese methods are implemented has three separate memory paths (e.g., Cray Y-MP),the memory tra�c will then limit the performance. This is an important considerationfor RISC-based architectures.CDS Matrix-Vector ProductIf the n� n matrix A is stored in CDS format, it is still possible to perform a matrix-vector product y = Ax by either rows or columns, but this does not take advantageof the CDS format. The idea is to make a change in coordinates in the doubly-nestedloop. Replacing j ! i + j we getyi  yi + ai;jxj ) yi  yi + ai;i+jxi+j :With the index i in the inner loop we see that the expression ai;i+j accesses the jthdiagonal of the matrix (where the main diagonal has number 0).The algorithm will now have a doubly-nested loop with the outer loop enumeratingthe diagonals diag=-p,q with p and q the (nonnegative) numbers of diagonals to theleft and right of the main diagonal. The bounds for the inner loop follow from therequirement that1 � i; i+ j � n:The algorithm becomesfor i = 1, ny(i) = 0end;for diag = -diag_left, diag_rightfor loc = max(1,1-diag), min(n,n-diag)y(loc) = y(loc) + val(loc,diag) * x(loc+diag)end;end;The transpose matrix-vector product y = ATx is a minor variation of the algorithmabove. Using the update formulayi  yi + ai+j;ixj= yi + ai+j;i+j�jxi+jwe obtain



4.3. DATA STRUCTURES 71for i = 1, ny(i) = 0end;for diag = -diag_right, diag_leftfor loc = max(1,1-diag), min(n,n-diag)y(loc) = y(loc) + val(loc+diag, -diag) * x(loc+diag)end;end;The memory access for the CDS-based matrix-vector product y = Ax (or y = ATx) isthree vectors per inner iteration. On the other hand, there is no indirect addressing,and the algorithm is vectorizable with vector lengths of essentially the matrix or-der n. Because of the regular data access, most machines can perform this algorithme�ciently by keeping three base registers and using simple o�set addressing.4.3.3 Sparse Incomplete FactorizationsE�cient preconditioners for iterative methods can be found by performing an incom-plete factorization of the coe�cient matrix. In this section, we discuss the incompletefactorization of an n � n matrix A stored in the CRS format, and routines to solvea system with such a factorization. At �rst we only consider a factorization of theD-ILU type, that is, the simplest type of factorization in which no \�ll" is allowed,even if the matrix has a nonzero in the �ll position (see section 3.4.2). Later we willconsider factorizations that allow higher levels of �ll. Such factorizations considerablymore complicated to code, but they are essential for complicated di�erential equations.The solution routines are applicable in both cases.For iterative methods, such as QMR, that involve a transpose matrix vector prod-uct we need to consider solving a system with the transpose of as factorization aswell.Generating a CRS-based D-ILU Incomplete FactorizationIn this subsection we will consider a matrix split as A = DA + LA + UA in diagonal,lower and upper triangular part, and an incomplete factorization preconditioner of theform (DA+LA)D�1A (DA+UA). In this way, we only need to store a diagonal matrixDcontaining the pivots of the factorization.Hence,it su�ces to allocate for the preconditioner only a pivot array of length n(pivots(1:n)). In fact, we will store the inverses of the pivots rather than the pivotsthemselves. This implies that during the system solution no divisions have to beperformed.Additionally, we assume that an extra integer array diag ptr(1:n) has been allo-cated that contains the column (or row) indices of the diagonal elements in each row,that is, val(diag ptr(i)) = ai;i.The factorization begins by copying the matrix diagonalfor i = 1, npivots(i) = val(diag_ptr(i))end;Each elimination step starts by inverting the pivot


