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beginning of each jagged diagonal. The advantages of JDS for matrix multiplications
are discussed by Saad in [185].

The JDS format for the above matrix A in using the linear arrays {perm, jdiag,
col_ind, jd_ptr} is given below (jagged diagonals are separated by semicolons)

jdiag [ 6 |9 | 3|10 |9 |5 | 7|68 |-3|13|-L;{H|-2|7]1;]|4;
colind |2 |2 |1 1155, 14133 2 6| 6;5| 5|4]4;]6;
|perm|4|2|3|1|5|6||jd_ptr|1|7|13|17|.

Skyline Storage (SKS)

The final storage scheme we consider is for skyline matrices, which are also called
variable band or profile matrices (see Duff, Erisman and Reid [80]). Tt is mostly of
importance in direct solution methods, but it can be used for handling the diagonal
blocks in block matrix factorization methods. A major advantage of solving linear
systems having skyline coefficient matrices is that when pivoting is not necessary, the
skyline structure is preserved during Gaussian elimination. If the matrix is symmetric,
we only store its lower triangular part. A straightforward approach in storing the
elements of a skyline matrix is to place all the rows (in order) into a floating-point
array (val(:)), and then keep an integer array (row ptr(:)) whose elements point to
the beginning of each row. The column indices of the nonzeros stored in val(:) are
easily derived and are not stored.

For a nonsymmetric skyline matrix such as the one illustrated in Figure 4.1, we store
the lower triangular elements in SKS format, and store the upper triangular elements
in a column-oriented SKS format (transpose stored in row-wise SKS format). These
two separated substructures can be linked in a variety of ways. One approach, discussed
by Saad in [186], is to store each row of the lower triangular part and each column
of the upper triangular part contiguously into the floating-point array (val(:)). An
additional pointer is then needed to determine where the diagonal elements, which
separate the lower triangular elements from the upper triangular elements, are located.

4.3.2 Matrix vector products

In many of the iterative methods discussed earlier, both the product of a matrix and
that of its transpose times a vector are needed, that is, given an input vector = we
want to compute products

y= Ax and y=A"z.

We will present these algorithms for two of the storage formats from §4.3: CRS and
CDS.

CRS Matrix-Vector Product

The matrix vector product y = Az using CRS format can be expressed in the usual
way:

Yi = § a; ;Tj,

J
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Figure 4.1: Profile of a nonsymmetric skyline or variable-band matrix.

since this traverses the rows of the matrix A. For an n x n matrix A, the matrix-vector
multiplication is given by

for i =1, n
y(i) =0
for j = row_ptr(i), row_ptr(i+l) - 1
y(i) = y(i) + val(j) * x(col_ind(j))
end;
end;

Since this method only multiplies nonzero matrix entries, the operation count is 2 times
the number of nonzero elements in A, which is a significant savings over the dense
operation requirement of 2n2.

For the transpose product y = AT & we cannot use the equation

T
yi= Y (AT)iju; = ajiu;,
J J
since this implies traversing columns of the matrix, an extremely inefficient operation
for matrices stored in CRS format. Hence, we switch indices to

for all 5, do for all i: Yi < Yi +a;x;.
The matrix-vector multiplication involving A is then given by

for i =1, n
y(i) = 0
end;
for j =1, n
for i = row_ptr(j), row_ptr(j+1)-1
y(col_ind(i)) = y(col_ind(i)) + val(i) #* x(j)
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end;
end;

Both matrix-vector products above have largely the same structure, and both use
indirect addressing. Hence, their vectorizability properties are the same on any given
computer. However, the first product (y = Az) has a more favorable memory access
pattern in that (per iteration of the outer loop) it reads two vectors of data (a row
of matrix A and the input vector x) and writes one scalar. The transpose product
(y = ATx) on the other hand reads one element of the input vector, one row of
matrix A, and both reads and writes the result vector y. Unless the machine on which
these methods are implemented has three separate memory paths (e.g., Cray Y-MP),
the memory traffic will then limit the performance. This is an important consideration
for RISC-based architectures.

CDS Matrix-Vector Product

If the n x n matrix A is stored in CDS format, it is still possible to perform a matrix-
vector product y = Az by either rows or columns, but this does not take advantage
of the CDS format. The idea is to make a change in coordinates in the doubly-nested
loop. Replacing j — ¢ + j we get

Yi =Yt a2 = Y Yt Gty -

With the index 7 in the inner loop we see that the expression a;;4; accesses the jth
diagonal of the matrix (where the main diagonal has number 0).

The algorithm will now have a doubly-nested loop with the outer loop enumerating
the diagonals diag=-p,q with p and ¢ the (nonnegative) numbers of diagonals to the
left and right of the main diagonal. The bounds for the inner loop follow from the
requirement that

1<ii+j<n.
The algorithm becomes

for i =1, n
y(i) =0
end;
for diag = -diag_left, diag_right
for loc = max(1l,1-diag), min(n,n-diag)
y(loc) = y(loc) + val(loc,diag) * x(loc+diag)
end;
end;

The transpose matrix-vector product y = ATz is a minor variation of the algorithm
above. Using the update formula

Yi & Yi T iy
= Yt Qitjitj—jTitj

we obtaln
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for i =1, n
y(i) =0
end;
for diag = -diag_right, diag_left
for loc = max(1l,1-diag), min(n,n-diag)
y(loc) = y(loc) + val(loc+diag, —diag) #* x(loc+diag)
end;
end;

n -

The memory access for the CDS-based matrix-vector product y = Az (or y = ATz) is
three vectors per inner iteration. On the other hand, there is no indirect addressing,
and the algorithm is vectorizable with vector lengths of essentially the matrix or-
der n. Because of the regular data access, most machines can perform this algorithm
efficiently by keeping three base registers and using simple offset addressing.

4.3.3 Sparse Incomplete Factorizations

Efficient preconditioners for iterative methods can be found by performing an incom-
plete factorization of the coefficient matrix. In this section, we discuss the incomplete
factorization of an n X n matrix A stored in the CRS format, and routines to solve
a system with such a factorization. At first we only consider a factorization of the
D-TLU type, that is; the simplest type of factorization in which no “fill” is allowed,
even if the matrix has a nonzero in the fill position (see section 3.4.2). Later we will
consider factorizations that allow higher levels of fill. Such factorizations considerably
more complicated to code, but they are essential for complicated differential equations.
The solution routines are applicable in both cases.

For iterative methods, such as @M R, that involve a transpose matrix vector prod-
uct we need to consider solving a system with the transpose of as factorization as
well.

Generating a CRS-based D-/LU Incomplete Factorization

In this subsection we will consider a matrix split as A = Da + L4 + Ua in diagonal,
lower and upper triangular part, and an incomplete factorization preconditioner of the
form (D4 —|—LA)D21 (Da+Ua). In this way, we only need to store a diagonal matrix D
containing the pivots of the factorization.

Hence,it suffices to allocate for the preconditioner only a pivot array of length n
(pivots(1:n)). In fact, we will store the inverses of the pivots rather than the pivots
themselves. This implies that during the system solution no divisions have to be
performed.

Additionally, we assume that an extra integer array diag ptr(1:n) has been allo-
cated that contains the column (or row) indices of the diagonal elements in each row,
that is, val(diagptr(i)) = a;,.

The factorization begins by copying the matrix diagonal

for i =1, n
pivots(i) = val(diag_ptr(i))
end;

Each elimination step starts by inverting the pivot



